ON SOME EXTINCT REPTILES AND BATRACHIA FROM THE JUUDITH RIVER AND FOX HILLS BEDS OF MONTANA.

BY E. D. COPE.

LELAPS, Cope.

Proceed. Acad., Phila., 1866, p. 275 . Extinct Batr. Rept. N. Amer., 1869, p. 100.
'Two speeies of this genus were described in the latter memoir above eited, the L. aquilunguis, Cope, and L. macropus, Cope, both from the greensand or Fox Hills group of the cretaceous of New Jersey. A considerable portion of the skeleton of the former was cleseribed, ineluding the peeuliarities of the ankle-joint, whieh led me to the conclusion, previously unsuspected hy naturalists, that the Dinosauria present affinities to the eursorial birds. The teeth of this species were described and figured, but in the L. macropus they were, and still remain, unknown.

In a preliminary report on the extinct vertebsata obtained by the writer on the Upper Missouri the present year, three addititional species were referred to this genus, viz.: the Lxelaps incrassatus; L. explanatus, and L. falculus. Their eharacters were ascertained from teeth alone, so that their pertinence to the genus Laelaps is not fully assmred. A fonrth species of carnivorous dinosaurian was described under the name of Aublysodon lateralis.

One of the most valuable specimens obtained by my expedition of 1876, is the nearly entire left dentary bone of the Laclaps incrassatus, whieh exhibits the teeth of its two extremities. The different forms of the teeth of the earnivorous Dinosauria graduate into each other by such easy stages, as to have given rise to question in reference to their proper interpretation; whether they indieate different species or only different positions in the dental series. In describing the Aublysodon horridus, the first known of the speeies of the Judith River beds, Dr. Leidy expressed the suspicion that a certain form characterizel the teeth in the position of incisors, another those in the position of eanines, and another form the remainder of the series. The teeth of the last kind have the form of those of Laxlops; in others the posterior serrulate cutting edge is
latero-posterior, the posterior aspeet being thiekened, and either transverse or convex in section. In the supposed canines the anterior serrulate edge is wanting, or represented by a seeond posterior edge parallel with the original one, thus forming a eompressed chair-shaped crown. Numerous specimens of all these forms were obtained by the expedition.

Examination of the dental series of the Lataps incrassatus shows that the anteroposterior diameter of one or two teeth in the position of canine, becomes oblique in the curved long axis of the dentary bone. 'The transverse dianeter is also greatly increased so as to equal or even exceed the antero-posterior; the serrate edges are opposite to each other. A tooth of this type was the first of this species which I observed, and the name has referenee to its peculiar form. A tooth in the position of first or anterior ineisor, differs in having the anterior serrate crest removed to the middle of the inner aspect of the apical portion of the crown, while tbe posterior edge retains its usual position. Further posterior transfer of the anterior entting edge and a grooving of the posterior face, would produce a tooth of the form suspeeted by Leidy to be the canine of Aublysodon horridus, while the canine just deseribed is different from any tooth relerred by Leidy to the same species. But a large tooth found in immediate assoeiation with the jaw, but separated from it, has the posteriorly truncate form described by Leidy as typieal, and is very probably the tooth of the maxillary bone, near the position of the superior eanine of a mammal.

It may be observed in eonclusion, that if the teeth suspeeted by Leidy to be eanines of Aublysodon horvidus, but which I suppose to be ineisors, are really such, Aublysodon must be regarded as a genus distinct from Lxlaps; while, on the other hand, should such determination prove to be inadmissible, and the two genera be the same, the name Lrlaps must be preserved as the older; it was published in 1866, while Aublysodon bears date 1868 .

In examining the very numerous teeth diseovered by the expedition, I find four species in addition to those already named. A list of all the species is now given.
Lælaps inorassatus, Cope, Proceed. Acad. Nat. Sci.1876, Oct.
The dentary bone of this speeies, above alluded to, is of compressed form, and becomes thin and plate-like in its posterior portion. The latter is excavated on the inner side, where it is proba-
bly applied to the opercular and surangular bones, if they exist, and a large foramen is continued from the concavity into the remaining part of the dentary, as a tubular canal. Above the foramen there originates a groove which runs parallel to the inner alveolar border to the posterior edge of the symplysis. The latter is short, and searcely distinguished from the other surfaces; the attachment of the rami was evidently ligamentous and more or less morable. 'The anterior alveolar portion of the ramus is prorluced, so that the symphysis slopes backwards below. The inferior border of the dentary bone is gently concave behind its middle. It is throughout convex in the transperse direction.

The external alveolar wall is an inch higher than the internal. The inner portions of the septa are apparently subject to exfoliation and subdivision in connection with the renewal of the teeth as a groove which is continuous with the inner alveolar borders, cuts them off from the other interior surface of the dentary bone. The external face of the dentary is in general plane, but is variously excavated along its superior border. An inch below the latter there extends a series of large foramina, each one of which is situated opposite to an interalveolar septum. They are more numerous anteriorly, a foramen being opposite each alveolus as well, and each foramen is comected with the border by a shallow groove. Similar foramina extend down the outer side of the symphyseal border, and along the inferior border of the dentary for two-thirds of its length. The same proportion of the external face is obsoletely rugose through the presence of delicate lines of growth. Such lines extend on the lower part of the interior face obliquely upwards and backwards.

There are alveola for fifteen teeth in the dentary bone. Of these only the second, third, fourth, fifth, twelfth, and fifteenth contained teeth capable of functional use at the time the jaw was inclosed in the lacustrine mud. Successional tecth oceupy the first, tenth, and twelftll, but no two teeth are in an identical stage of protrusion. The section of the crown from and including the fourth to the last is nearly equilaterally lentieular. Their surface is smooth.
Mertsurements. M.
Length of entire dentary bone 025
Depth at posterior border of symphysis 110
"6 b last tooth 192
" to internal groove 060
6 6 6 foramen 074
Length of crown of second tooth 029
Diameter of second tooth at base $\left\{\begin{array}{l}\text { antero-posterior } \\ \text { transserse . }\end{array}\right.$ 013 018
Length of crown of twelfth tooth 043
Diameter at base of twelfth tooth $\left\{\begin{array}{l}\text { antero-posterior } \\ \text { transverse . }\end{array}\right.$ 025 017
Length of crown of superior ?canine 062
Antero-posterior diameter of do.As comparcd with the Lxlaps aquilunguis, of which a portionof the dentary bone is known, this species differs in the greaterdiameter of its inferior borrer anteriorly, in the presence of theinternal groove, in the greatcr clevation of the external aiveolarwall, and, if the character be constant, in the greater robustncssof the form of the dental crowns. The individnal here describedis rather larger than the type of L. aquilunguis, but it is probablethat the species were not very different in dimensions.

Lælaps hazenianus, sp. nov.
Scecn tecth from different localities present constant characters which readily distinguish them from all other species of the genus. Their size is less than those of the two species above mentioned, and is greater than in the species enumerated below.

The crowns are short and robust, and are abruptly terminated by the strong recurvature of the anterior cutting edge. The apcx has, therefore, a more posterior dircetion than in the L. incrassa$t u s$, while the anterior cutting colge is shorter. The latter is shortened below also, not extending to the base of the enamel, but terminating in a short lateral curvature. At the base, therefore, the antcrior border is rounded, while the postcrior is acutc. The denticulations are of medium size, measuring M. . 00033.

Measurements. M.

$$
\begin{aligned}
& \text { Length of crown } \\
& \text { Diameter of crown }\left\{\begin{array}{llllll}
\text { antero-posterior } & \text {. } & \text {. } & \text {. } & \text {. } & .014 \\
\text { transverse }
\end{array}\right.
\end{aligned}
$$

Both sides are convex, but not equally so, and the surfate is smooth, and without facets.

This saurian is dedicated to General Hazen, now in command at Fort Buford, Dakota, as a token of respect for his qualities as a man and his services in the interest of science.

Lælaps lævifrons, sp. nov.

A tooth half the size of those referred to the L.hazenianus, and exceeding by a little the largest of those of L. explanatus, presents such characters as induce me to believe that it belongs to a species distinct from either. It is of the elongate acuminate form of some of those referred to the L.incrassatus, and both sides are couvex, but not equally so. A shallowly concave plane occupies the middle of the more convex side. The posterior cutting edge is denticulate to the base, but the anterior, though of the same form as in the other species, and unworn, is absolutely smooth. In this respect it differs from the other species, excepting L. falculus. The denticulations are finer than those of any other species, measuring M. . 00020 ; in L. explanatus they measure M. . 00022 .

Mersurements. M.
Elevation of crown 015
Diameter of crown $\left\{\begin{array}{l}\text { antero-postcrior } \\ \text { transperse }\end{array}\right.$. 0074
Lælaps explanatus, Cope, Proceedings Academy, October, 1876.
Lælaps falculus, Cope, loc. cit.
Lælaps cristatus, Cope, sp. nov.
Another small species well distinguished by the form and coarse denticulation of the teeth, approaching the genus Troödon.

The crowns of the teeth are short, stout, compressed, and curved. Both sides are convex, and neither is facetted. The denticles are large, those of the posterior cutting edge the largest, and measuring M. .0005. A characteristic feature is the full development of the denticulate anterior cutting edge of the crown. This extends to the base, becoming more prominent as it deseends. Surface smooth.

Meusurements. м.

ZAPSALIS, Cope.
The teeth of this genus are intermediate in form between those of Lalaps and Paronychodon. They have one flat and one con-
vex side, whose junctions form the anterior and posterior edges of the crown, as in the latter genus; and like the latter, there is no anterior cutting edge, but instead, a solid angle. But the posterior edge is denticulate as in Lxlaps, and the plice or keels of Paronychodon are here only recognizable in low angles. Some light may be east on the affinities of the latter genus by the discovery of Zapsalis.
Zapsalis abradens, sp. nov.
This reptile was apparently about the size of the Lalaps levifrons. The best preserved tooth is that of a probably adult animal, as it displays considerable attrition, espeeially on the flat side. Here three worn lines indicate the former existence of as many low longitudinal angles of the surface, of which the median is basal and short. The convex side exhibits four low angles of nearly equal length, all stopping short of the apex. The facets between them, excepting the anterior two, are slightly concave. The denticles are of moderate coarseness, measuring M. .00033.

Measurements. M.
Elevation of crown 0120
Diameter of crown $\left\{\begin{array}{l}\text { antero-posterior } \\ \text { transserse }\end{array}\right.$
URONAUTES, Cope.
Genus novum Sauropterygiarum. Cervieal vertebre, like the dorsals and caudals, short and transverse, and distinct from each other. Neural arehes and transverse processes coössified at maturity. Transverse processes of the cervicals simple and depressed. Extremities plesiosauroid.
'This genus might be referred to Polycotylus, Cope, were it not for the distinctness and greater abbreviation of the cervical vertebre. From Cimoliasaurus, Leidy, it differs in the eoössification of the eaudal diapophyses and the much greater abbreviation of the ecrvical vertebre. The centra are amphiplatyan in Cimoliasaurus, biconcave in Uronautes. From Pliosaurus, Owen, which resembles the present form in the shortness of the cervieal vertebre, the eoössified transverse processes of the eervicals separate it. 'The present is pre-eminently a short-neeked genus of the order.

The remains on which it reposes are the eervical, dorsal, and caudal vertebre, with portions of limb and rib bones.

Uronautes cetiformis, sp. nov.
The cervieal vertebra of this speeies is of unusual form, heing short and transverse, and not wider than deep. In Polycotylus latipimis this vertebra is mueli wider than deep, and as long as wide. The neuropophyses are compressed so as to be anteroposterior, and they inclose a rather wide neural canal. 'The parapophyses are directed equally downwards and outwards, occupying the position of the angle of a subquatrate ontline, since the sides are nearly vertieal. The articular faces are slightly concave, and the centrum is perforated vertically by the usual two foramina.

A dorsal vertebra found in immediate proximity to the cervical just described is much like that of the Polycotylus latipinnis. That is, it is exceedingly short antero-posteriorly, and has eoncare artieular faces, the concavity with flat fundns, and marked with a few obseure eoneentrie grooves. The sides are also slightly concare, and are piereed with a foramen at the superior portion. The vertical foramina are also present. The neural arch is in this specimen separated from the eentrom, not having become coössified. This eircumstanee might lead to a donbt as to the proper referenee of the specimen to this animal, but such doubt has little foundation. In one of the eaudal vertebre one of the diapophyses is eoössified, and the other is not. The suture of the surface thus exposed is of a very fine texture, and evidently not like that seen in the genera where it is to aet as a permanent articulation. In the ease of the dorsal vertebra, the suture for the neuropophysis has the same character. This vertebra is much larger than the eervical, but does not muel exceed the proximal caudal in size; preserving the relations seen in the Polycotylus latipinmis. Adjoining the border of the fossa of the neuropophysis is a small parapophysial tuberosity.

A proximal eadal vertebra has a very small fore and aft diameter, and the vertieal exeeeds the transserse diameter. The diapophyses spring from the middle of the sides of the centrom, while the inferior faee is separated from the inferior lateral faces by an olstuse longitndinal angle. In general, the form is that of a transierse hexagon. The chevron facets are very slightly developed. Another probably distal caudal rertebra considerably resembles that in the corresponding part of the skeleton of a cetacean. It is without neural arch, transverse, flat below, and
with the two lateral faces of unequal length, the superior being the longer. The vertical perforating foramina join at the neural canal, and there is a short subquadrate plane on each side of the latter. There are no indications of chevron facets. These vertebrat are different from any of those yct known in Polycotylus.

Measurements.	
antero posterior	. 016
Diameter of a cerrical centrum vertical.	. 026
(transverse	.029
antero-posterior .	. 030
Diameter of a dorsal rertical .	55
(transverse	. 056
(antero-posterior	. 022
Diameter of a proximal caudal vertical	. 040
(transverse	. 062
antero-posterior	.015
Diameter of a distal caudal vertical.	. 017
(transverse	.038
Diameter of neural canal of the proximal caudal a sured	mea-

The distal end of a proximal limb bone is much like the corresponding part of Polycotylus latipinnis. It is relatively of large size, flat, and strongly convex at the extremity, which is not transversely truncate. A portion of another limb bone, perhaps belonging to the distal segment, is symmetrical. The shaft is broken off, and displays a large medullary cavity, with thin walls, which soon terminates towards the articular cnd, in a fundus with a fissure in the bottom. The proximal portion of a rib has a truncate head of an oval outline. The inferior border presents a low tubcrosity, which may represent the capitulum.

Measurements. м.

Width of distal end of proximal limb bone 109
Thickness of the same 032
Diameter of proximal end of a rib $\left\{\begin{array}{l}\text { longer } 030 \\ \text { shorter }\end{array}\right.$
The boncs abore described were found together by the writer, on a slope of the cream-colored soft sandstone, which lies above the black shales of Cretaccous No. 4, near Amell's Creek, Montana. I suppose the formation to be the No. 5, or Fox llills group of Mcek and Hayden. Near them were found shark's teeth
of the genera Otodus and Lamma, and a species of Enchodus. Above them I fomd lying loose a fragment of a Baculites.

CHAMPSOSAURUS, Cope.
Genus novum. Tertebre of more than a hundred individuals referable to several species, which I ohtained from the Jurlith River beds of the Upper Missouri region, present characters which demand the establishment of a new genus for their reception.

The characters presented by the vertebral column are the following: The ribs have a single head, which articulates with a prominent tuberculnm, excepting those of the cervical vertebre. On these there is a small capitular tubercle below the diapophysis. It commences rery small, and inferior in position, being removed, in fact, but a short distance from the inferior middle line in the first vertebra in which it appears. It rises rapidly in the succeeding centra until it is merged in the tuberculum of the diapophysis. The latter projects from the neural arch, which is free from the centrum, but in none does the base of the diapophysis rise from a point ahove the floor of the neural canal. On the dorsals it is vertically compressed. One of the anterior cervicals, probably the axis, is obliquely truncated below its anterior articular face, for a free hypopophysis or os odontoideum. This vertebra has no parapophysis, and the articular faces for the neuropophysis are superior. The few vertebre in each of several series, prohably from the sacral region, are more depressed than the others, and the facets for the diapophyses present a greater antern-posterior extent, but none are coössified. The candal vertebre are distally quite compressed. In all, except the anterior ones, the neural arch is coössified with the centrum, and in such there are no diapophyses. In those with free neural arch, the facets for the nemropophyses turn down on the sides of the centrum.

The articular extremities of the centra are plane, those of the caudal series slightly concare. There are no hypapophyses behind the axis, excepting a longitudinal carina, which ceases to exist on the dorsal vertebre. The zygapophyses are simple. The chevron hones are free.

The relations of the atlas and axis, though not fully elucidater by my specimens, are peculiar. The former has separate neurapophyses, which have nearly the sliape of those of the Streptostylicate lifptilia, resembling much those of the Pythonomorpha.

Although I proeured numerous cervical vertebre, there are but few which exhibit the antero-inferior facet for supposed hypapophysis, already deseribed. The position of this vertebrat was in front of the first eervieal which displays a parapophysis, and is, on this aecount, likely to be the axis or the third cervical vertebra. It is the more probably the axis, as there is no other among the large number of vertebre in my eollection whieh can be referred to that position. Its anterior articular face is smooth and like the posterior, showing that the odontoid bone was not coössified with it. Now in the Crocodilia the odontoid bone is united with the anterior extremity of the axis by suture, which may become coössified with age, while the free hypapophysis is wanting. In the streptostylieate orders the hypapophysis is present, and the odontoid is above it, but united to the axis by suture. On the other hand, in the Rhynchocephalia, the axis is eoössified with both odontoid and hypapophysis, and a few succeeding vertebra possess free hypapophyses. Thms it is possible that I am yet unacquainted with the axis of Champsosaurus.

One entire rib and the heads of several others are all that were obtained. The former is from the anterior part of the dorsal series, and is stout and short. The head is truncate and compresserl, its articular face is contracted, forming a narrow figure eight. The slaft is obliquely flattened. The extremities are separated from the lateral surfaces by a narrow angle, as though capped with cartilage in life, as in the Pythonomorpha.

Bones of the extremities are very rare. One fragment resembles the proximal end of a crocodilian tibia, and another is like the distal half or more of the tibia of the same type.

There is considerable resemblance between the vertebre of this genus and those of Hyposaurus, Ow., from Cretaceous No. 5, of New Jersey, but the relations of the axis and atlas in that genus are as in other Crocodilia, and not like those seen in Champsosaurus. The absence of saerum preeludes the possibility of regarding this form as dinosaurian. It rather seems to share some rhynehoeephalian eharaeters with general amphiplatyan crococlilian resemblances. The shortness and rohustness of the thoracie ribs is a feature quite unique, and reminds one of the Batrachia. The teeth are unknown in their true relations, but there are several types in the eolleetions which may be fomed to belong here. 'These are of the rhizociont character.

As a summary of the preeeding, I propose to refer the genus Champsosaurus to the order Rhynchocephalia, provisionally. It differs very mueh from the typical genus of that order, Sphenodon, in the non-eoössification of the satral vertebre, and non-union of the neural arches of the vertebree with their eentra, and the absence of the chordal perforation of the latter. It differs from the extinet genera Clepsydrops and Cricolus, Cope, in the last mentioned two eharacters. On these grounds it may constitute a distinct suborder, under the name of Choristodera.

It is possible that the tooth, which I referred to a new genus and species, under the name of Paromychodon lacustris (Proceedings Academy, 1876, October), may belong to one of those of the present genus. In that ease the older generie name takes precelenee of the later. I may add that some vertebre of this genus have heen figured and deseribed by Itr. Leidy in the Transactions of the Ameriean Philos. Society, 1860 , without name.

I recognize four species among the vertebre, chiefly by characters observed in the cervical region. There is a great diserepaney of size among them, and the small ones may be immature.

Champsosaurus profundus, sp. nov.
This species is eliefly known from a series of vertebre found together, and having every appearance of pertaining to the same animal. It consists of a cervieal, three dorsal, and a sacral rertebre. Other isolated vertebra of several individuals present similar characters.

The primary feature is the great vertical diameter of the dorsal vertebre as compared with the transverse measurement. This is oceasioned by the great development of the inferior keel, to which the sides of the centrum eonverge, without coneavity. In corresponding eentra of the C. amectens the inferior face is merely angulate. Another character is the obliquity of the articular faces to a vertical plane drawn at right angles to the long axis of the centrum. 'This is most strongly marked on posterior dorsals, where the inferior keel is less prominent. The sacral vertebra has a depressed form.

An anterior candal vertehra may belong to this or an undeseribed species. It has rudiments only of the eherron-facets, and having a large neural arch, is doubtless from the anterior part of the series. It is more compressed than the corresponding one in C.
annectens, and has an acute inferior angle, which is wanting in the latter.

$$
\begin{aligned}
& \text { Measurements. } \\
& \text { No. } 2 . \\
& \text { Diameter of posterior dorsal centrum }\left\{\begin{array}{l}
\text { antero-posterior } \\
\text { vertical } \\
\text { transverse }
\end{array} \quad . \quad .023\right.
\end{aligned}
$$

Champsosaurus annectens, Cope, sp. nov.
The greater number of vertebre ohtained belong to this saurian, Which may therefore be looked upon as the type of the genus.

The cervieal which bears the hypapophysial facet presents a carina below, whieh is only prominent between the articular faees. One such cervieal in the eolleetion is rounded below, and may be anterior in the series, or may belong to another species. The inferior keel is strong on the other cervicals, but soon disappears on the anterior dorsals. The remaining centra are rounded below. The parapophyses where present are knob-like, and the eorresponding part of the transverse process is similar in the anterior dorsal vertebre. The base of the neural areh is nearer the anterior than the posterior articnlar face. These faces are nearly round in the anterior eaudal centra, but soon beeome rertical ovals, with the eompressed form. There is a fossa below and in front of the parapoplyysis, whieh continues to beyond the anterior dorsals. The dense layer of the surface of the eentrum is smooth, exeept some delieate striations near the artieular borders. These are most marked along the median inferior face of the eaudal vertebre, whieh is flat, grooved, and distally aeute.

I cannot eertainly eonneet the vertebrie of a series as those of a single individual.

Measurements.
No. 1.
м.

Diameter of a cervical with hypapophysis $\left\{\begin{array}{l}\text { antero-posterior } .023 \\ \text { vertical } \quad . \\ \text { transverse } \\ \text {. }\end{array}\right.$

No. 2. | Diameter do. without hypapophysis $\left\{\begin{array}{l}\text { antero-posterior } \\ \text { vertieal } \\ \text { transverse }\end{array} \quad . \quad . \quad .017\right.$ |
| :--- |

No. 3.
Diameter do. without hypapophysis $\left\{\begin{array}{l}\text { atutero-posterior } \\ \text { vertical } \\ \text { transverse }\end{array} .011 . .010 .5\right.$
No. 4.
Diameter of an anterior dorsal $\left\{\begin{array}{l}\text { antero-posterior } \\ \text { vertieal } \\ \text { transverse . }\end{array} \quad . \quad . \quad . \quad .0233\right.$
No. \%.
Diameter of an anterior dorsal $\left\{\begin{array}{l}\text { antero-posterio: } \\ \text { rertical } \\ \text { transverse }\end{array} . \quad . \quad . \quad .008, .00 \pi z\right.$
No. 6.
Diameter of a sacral centrum $\left\{\begin{array}{l}\text { antero-posterior } 010 \\ \text { rertical } 009 \\ \text { transverse . . . }\end{array}\right.$
No. \%.
Diameter of an anterior caudal $\left\{\begin{array}{l}\text { antero-posterior } \\ \text { vertical } \\ \text { transverse }\end{array} \quad . \quad . \quad . \quad .083\right.$
No. 8.
Diameter of a median caudal $\left\{\begin{array}{l}\text { antero-posterior } \\ \text { vertical } \\ \text { transverse }\end{array}\right.$. 0117
Diameter of a posterior caudal $\left\{\begin{array}{l}\text { antern-posterior } \\ \text { vertical } \\ \text { transerse } .\end{array} . \quad . \quad . \quad .014\right.$

A rertebra not distinguishable from the corresponding one of this species was found near Amell's Creek, on a bank of reposit of the Fox Hills group (No.5), with the bones of the Uronaules celiformis, supra. I cannot account for this circumstance, as it is the most abundant fossil of the Judith River beds (No. 6).

Champsosaurus brevicollis, sp. nov.
On one oceasion the writer discovered a number of vertebre of this genus close together, and in such relation as to induce the belief that some of them belonged to the same individual. P'arts of several were obtained, however, adding another evidence of the
manner in which the fossils of this formation have been dislocated and scatterel. The evidence for the existence of this speeies must be allowed to rest at present on a ecrvieal vertebra, with free hypapophysis. This body differs from the corresponding oue in the C.annectens in its greater brevity as eompared with its length. The vertical and transverse diameters exceed the longitudinal in the C.brevicollis, while in the C. annectens the length exeeeds both. The inferior aspect of this centrum is broadly rounded, not carinate as in C. annectens. The value of this character is uneertain, but a centrum similarly rounded below (above alluded to) has the more elongate form of the C. annectens.

Champsosaurus vaccinsulensis, sp. nov.
This reptile is indieated by a posterior dorsal vertebra in which the eommon base of the neural areh and diapophysis is decurved to below the middle of the side of the centrum. This surface has somewhat the outline of the section of a T-rail, the inner portion being on the superior face of the centrum. The eentrom is shorter than the corresponding ones of the C. annectens and C.profundus, so that the basis of the neural arch approaehes near the borders of the articular faces above. The centrun is perforated by two vertical foramina as in most Sauropterygia. The osseous tissue of the bone is quite dense, and the surface is smooth.

$$
\text { Diameter of centrum }\left\{\begin{array}{l}
\text { Measurements. } \\
\text { antero-posterior } \\
\text { vertical . } \\
\text { transverse }
\end{array} \quad . \quad . \quad . \quad . \quad . \quad . \quad .026\right.
$$

Besides the mueh larger size, this species differs from those previously referred to this genus in almost all details of proportion, ete.

SCAPHERPETON, Cope.

Genus novum Batrachiarum. Tertebre deeply biconcave, with opposed, but not continuous, foramina for the ehorda dorsalis. Neural arch with zygapophyses, and well-developed neural spine. Centrum with vertically compressed, short diapophysis
near the posterior extremity, a prominent lypapophysial keel, and prolonged neural spine. Supposed proximal limb bone with a branch-like trochanter. Supposed teeth in several rows, attached in slallow alveoli, those of the marginal series larger; the crowns obtusely conic and simple.

In the above diagnosis are expressed the general characters of a genus of probably tailed Batrachia which has left remains of several species in the Judith River beds of the Upper Missouri region. Although the vertebre resemble no little those of clepsydrops, Cope, a rhynchoeephalian lizard from supposed triassie or permian formations, the atlas is that of a batrachian. The limb bone probably belonging to it, is unlike that of any genus of the Proteida or Trachystomata, differing also from that of Menopoma, but approaching nearly that of the typical salamanders. The diapophyses are different in form from those of the Trachystomata Proteida and Amphiumidx, but resemble in their rertical compression those of Menopoma. They are generally broken in the specimens, but where preserved, are much shorter than in that genus, being even less produced than in most of the recent salamanders. The prominent keel of the median line helow is not found in salamanders, and it has no posterior prolongation resembling the structure seen in Amphiuma and Creciliida. The produced neural spine is a character not found among tailed Batrachia, and the posterior direction which it takes reminds one of the Iinosauria more than anything else, and is not like the form seen in Lacertitia. It is a prolongation of the roof-like extension of the neural arch seen in some of the tertiary salamanders of France.

The structure of the proximal limb bone, and the form of the diapophyses of the vertebre refer this genus with much probability to the Urodela. The produced neural arch, and the probably complex disposition of the teeth, indieate a family different from any of those now living. The biconcave centra place it nearest to the Amblystomidr.

The teeth above mentioned are attached to a fiagment of a jawhone. The erowns are all imperfect, and mostly broken ofl. There are three series of smaller teeth and a marginal series of teeth of one half greater diameter. 'They exhibit a moderate pulp earity, and the superficial investment of the crowns is not inflected. It has a minute granular rugosity, and the bases of the tecth are rugose
with impressed punctre. The teeth are described here beeause it is not known to which species they helong. It is, indeerl, not certain, but only probable, that they belong to this genus.

Fonr atlases preserved indicate two species; one being more depressed than the other three, and the anterior cotyli therefore more transverse.

The vertebre indieate four species. It is probable that they present some pecularities at different points in the same column, the eandals at least differing in some degree from the others. The characters of the species are quite well marked.

Scapherpeton tectum, sp. nov.

Represented by a vertebra whieh is one of the best preserved in the collection. The most prominent speeific charaeter is seen in the entire roofing over of the neural canal between the anterior zygapophyses, and in the downward production of the inferior median line of the centrum, and accompanying downward prolongation of the articular eups. The chordal perforation is at the superior fourth of the vertical diameter of the cups. The neural spine is produced backwards and eurved upwards, and is narrowed between the posterior zygapophyses, and is striate grooved on the under surfaee. A bout half of the posterior zygapophysis projects beyond the edge of the eup of the centrum. Immediately below the anterior edge of the posterior zygapophysis, the diapophysis begins. It is vertical, of an irregular figure 8 in seetion, and is direeted outwards and backwards. A foramen passes under its middle, emerging a little before the middle of the same horizontal diameter of the centrum. It is joined by another whieh strikes it from below at right angles. There is a deep noteh embraeed between the superior part of the diapophysis and the posterior zygapophysis. The neural canal is wider than deep.

A fragment aceompanied this vertelora when found, whieh resembles the articular portion of the mandible. There is no angle projecting behind the quadrate facet, which is oblique, truncating the extremity of the ramus. The lower edge is acute, hehind roughened, and a thickening extends along the middle of the imer side of the ramus so far as preserved. The character is that of a Urodele Batrachian.
Measurements. M.
Diameter of centrum $\left\{\begin{array}{l}\text { antero-posterior } \\ \text { rertical } \\ \text { transserse }\end{array}\right.$. 0875
transrerse0.500
Vertieal diameter of diapophyses 0.500
Transverse diameter of neural spine between posterior zyga- pophyses 0500
Depth mandibular ramus at front of quadrate cotylus 0800

Scapherpeton laticolle, sp. nov.
Tertebræ of several individuals of smaller size than those referred to the S. tectum differ in the less extensive development of the roof comecting the anterior zygapophyses, and the greater compression of the centrum, in consequence of the downward production of the inferior keel. The neural areh is openly notehed between the anterior zygapophyses, but the notch is bounded by a recurved lamina distinet from the zygapophyses. The diapophyses are much as in S.tectum; the ridge from the inferior portion of it is quite prominent, and inclucles with the base of the neural arch a deep fossa.

Accompanying a dorsal vertebra like those of this species, and probably belonging to the same skeleton, is an atlas of a more depressed form than those presumably belonging to the other species. The median tuberosity is well developed, constrieted at the base, and much flattened. The condyloid facets are narrow and transverse.

If it should appear that the dorsal vertebra do not represent a species distinct from the S. tectum, the S. laticolle may rest on the atlas described.

The limb bone abore mentioned is associated with the neural arch of a vertebra of the eharacter ascribed to this species. Both extremities are erorled so as not to display the forms of the condyles, thongh almost the entire length is preserved. The troehanter is imperfect, but its base is that of a subcylindric process. The head of the bone is subtriangular, and the section of the
distal end an oval with a flat side. The diameter contracts gradually to the middle.

This bone is plainly that of a mrodele salamander.
Scapherpeton excisum, sp. nov.
'This salamander is represented in the collection of the expectition by vertebre of three individuals of different sizes. They all agree in liaving the anterior zygapophyses separated by the concave excaration of the roof of the neural eanal usual in ordinary salamanders, and in the moderate development of the hypapophysial keel. As a result, the articular extremities of the ceutra are not produced so far inferiorly as in S.laticolle. The longitudinal ridge from the inferior part of the diapophysis is pronounced, and separates a deep fossa above it from another below it. The longitudinal perforation of the hase of the diapophysis issues in the superior fossa, while in the two smaller specimens a vertical perforation joins it from the inferior fossa. As in the preceding two species, one articular face is a little deeper than the other.

Specimen No. 1 is as large as the corresponding portion of an Amphiuma means.

Scapherpeton favosum, sp. nov.
The vertebra which I seleet as typical of this species is more distinet in character from those of the three species abore described, than they are from each other. Although the centrum presents a strong inferior keel, its border is not horizontal or convex, but eoneave, and the articular cups are proportionally little elongated downwards. The diapophyses have at their bases a
relatively small vertical diameter, and the longitudinal perforation enters below and before the base and not behind it. The longitudinal ridge from the inferior part of the latter is very prominent and horizontal, bridging over the vertical perforation, which enters the superior lateral fossa. It is separated below from the posterior perforation by a short oblique bridge. The neural arch is lost from this specimen.

There are other vertebre which display a slightly developed inferior keel, and articular cups little produced downwards, hut the fossat are less developed than in the one described.

$$
\text { Diameter of centrum }\left\{\begin{array}{l}
\begin{array}{l}
\text { Mertsurements. }
\end{array} \\
\begin{array}{l}
\text { antero-posterior } \\
\text { rertical } \\
\text { transverse }
\end{array} \\
\text { tre }
\end{array} \quad . \quad . \quad . \quad . \quad . \quad . \quad .006\right.
$$

The typical individual was about as large as the Menopoma.

HEMITRYPUS, Cope.

Represented by a rertebra of the general charaeter of those of the genus Scapherpeton, but which lacks the foramen ehordxe dorsalis of the posterior half of the centrum, and is not carinate on the inferior surface. The diapophysis is directed baekwards just below the posterior zygapophysis, inelosing with it a noteh into whieh the anterior zygapophysis is received. Anterior zygapophyses connected by a prolongation of the neural areh.

I had suspected that this vertebra might be one of those of the eervical region of a species of Scapherpeton, but the position of the for:umen chordæ dorsalis renders this highly improbable. The only position to which it eould be assigned in the column of this genus would be that of the axis. But the foramen is present in the posterior half of the atlas and thus probably in the axis in Scapherpeton, as in vertebref from all other regions of the coltomn, so that such an exception as is presented by the present centrum is not to be looked for. The absence of the carina, and the cylindric form of the centrum, add to the belief that the speeies does not belong to Scapherpeton.
Hemitrypus jordanianus, Cope, sp. nov.
No emargination between the anterior zygapophyses; neural spine directed upwards and backwards. The diapophyses vertically compressed, directed downwarls, inwards, and backwards,
and not giving origin to a strong ridge on the side of the centrum, as is seen in the species of Scapherpeton. Neither is there any fossa on the side of the centrum as in that genus. There is a small longitudinal foramen which enters the inner base of the inferior half of the diapophysis. There is a low ridge on each side of the neural arch, which extends backwards and inwards. The anterior articular face is a wide oval somewhat contracted below, and is pierced by a foramen at a point within the superior third of the vertical diameter. It is not so deeply excarated as in the species of Scapherpeton. The posterior articular face is a regular vertical oval, is concave, but not cxcavated, as is seen in the centra of the genus just mentioned. The inferior face of the centrum is rounded, with some feeble lateral ridges.

About the size of the Menopoma allegheniense.
This hatrachian is dedicated to Prof. D. S. Jordan, of the Northwestern Christian University, author of the Man ual of the Vertebrata of the Eastern United States.

